102) Operator formulation of Feynman Path Centroid dynamics for rotations. to be submitted

101) Quantum molecular dynamics simulations of confined parahydrogen molecules within clathrate hydrates: merging low temperature dynamics with the zero temperature limit. to be submitted

100) M. Schmidt and P.-N., Roy, “Ground state chemical potential of parahydrogen clusters of size N=21-40” to be submitted.

99) M. Schmidt and P.-N., Roy, “On the accuracy and efficiency of different methods to calculate Raman vibrational shifts of hydrogen clusters”, to be submitted

98) A. Marr, T. Halverson, A. Tripp, and P.-N. Roy, “Vibrational Raman Shifts of Spin Isomer Combinations of Hydrogen Dimers and Isotopologues”, submitted.

97) I.J.S. De Vlugt, D. Iouchtchenko, E. Merali, P.-N. Roy, and R. G. Melko, “Reconstructing quantum molecular rotor ground states”, Phys. Rev. B , under review.

96) Z. Zhang, H. Li, K. Kaup, P.-N., L. Zhou, L. F. Nazar, “Targeting superionic conductivity at room temperature by turning on anion rotation in fast ion conductors”, Matter, accepted.

95) T. Sahoo, D. Iouchtchenko, C. M. Herdman, and P.-N. Roy, “A path integral ground state replica trick approach for the computation of entanglement entropy of dipolar linear rotors”, J. Chem. Phys. 152, 184113 (2020).

94) S. Islam, B. Havranek, Z. Ibnat, and P.-N. Roy, “New Insights into the Role of Hydrogen Bonding in Furanoside Binding to Protein”, J. Phys. Chem. B 124, 1919 (2020).


93) A. Ibrahim, L. Wang, T. Halverson, R.J. Le Roy, P.-N. Roy, “Equation of state and first principles prediction of the vibrational matrix shift of solid parahydrogen”, J. Chem. Phys. 151, 244501 (2019).

92) D. Iouchtchenko, N. Raymond, P.-N. Roy, M. Nooijen, “Deterministic and quasi-random sampling of optimized Gaussian mixture distributions for vibronic Monte Carlo”, arXiv preprint arXiv:1912.11594.

91) Z. Zhang, P.-N. Roy, H. Li, M. Avdeev, L.F. Nazar, “Coupled Cation–Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes”, Journal of the American Chemical Society 141 (49), 19360-19372.

90) H. Li, X.L. Zhang, T. Zeng, R.J. Le Roy, and P.-N. Roy, “Suppression of para-hydrogen superfluidity in a doped nanoscale bose fluid mixture”, Phys. Rev. Lett. 123, 093001 (2019).


89) N. Raymond, D. Iouchtchenko, P.-N. Roy, and M. Nooijen, “A path integral methodology for obtaining thermodynamic properties of nonadiabatic systems”, J. Chem. Phys. 148, 194110 (2018).

88) D. Iouchtchenko and P.-N. Roy, “Ground states of linear rotor chains via the density matrix renormalization group”, J. Chem. Phys. 148, 134115 (2018).

87) M.Schmidt and P.-N. Roy, “Path integral Molecular dynamic simulation of flexible molecular systems in their ground state: application to the water dimer”, J. Chem. Phys. 148, 124116 (2018)

86) T Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: application to dipolar endofullerene peapods” J. Chem. Phys. 148, 074112 (2018).

85) K. P. Bishop and P.-N. Roy, “Free energy calculations with post quantization restraints: binding free energy of the water dimer over a broad range of temperatures”, J. Chem. Phys., 148, 102303 (2018).


84) Y. Kalugina and P.-N. Roy, ”Potential energy and dipole moment surfaces for HF@C60: prediction of spectral and electric response properties”, J. Chem. Phys. 147 244303 (2017).

83) L. Orr, L. Hernández de la Peña, and P.-N. Roy, “Formulation of state projected centroid dynamics: microcanonical ensemble and connection to the Wigner distribution”, J. Chem. Phys. 146, 214116 (2017).

82) C. M. Herdman, P.-N. Roy, R. G. Melko, A. Del Maestro, “Entanglement area law in superfluid 4He”, Nature Physics 13, 556–558 (2017) doi:10.1038/nphys4075


81) S. Yu, I. Gordon, and P.-N. Roy (Guest Editors), “Potentiology and spectroscopy in honor of Robert Le Roy: A preface to the special issue”, J. Mol. Spec. Volume 330, December 2016, Pages 1–3, doi: 10.1016/j.jms.2016.10.019

80) D. Iouchtchenko and P.-N. Roy, “Estimating ground state entanglement entropy using path integral molecular dynamics”, Recent Progress in Quantum Monte Carlo: ACS Symposium Series, Vol. 1234, Chapter 10, pp 145–154, (2016). doi: 10.1021/bk-2016-1234.ch010. Selected as Book Cover.

79) C. M. Herdman, P.-N. Roy, R. G. Melko, A. Del Maestro, “Spatial entanglement entropy in the ground state of the Lieb-Liniger model”, Phys. Rev. B 94, 064524 (2016). doi: 10.1103/PhysRevB.94.064524

78) R. G. Melko, C. M. Herdman, D. Iouchtchenko, P.-N. Roy, and A Del Maestro, “Entangling qubit registers via many-body states of ultracold atoms”, Phys. Rev. A 93, 042336 (2016). doi: 10.1103/PhysRevA.93.042336

77) T. Zeng, N. Blinov, K. Bishop, G. Guillon, H. Li, and P.-N. Roy, “MoRiBS-PIMC: a program to simulate molecular rotors in bosonic solvents using path-integral Monte Carlo”, Comp. Phys. Comm. 204, 170 (2016) doi:10.1016/j.cpc.2016.02.025


76) M. Schmidt, J. M. Fernández, N. Faruk, M. Nooijen, R. J. Le Roy, J. H. Morilla, G. Tejeda, S. Montero, and P.-N. Roy, “Raman Vibrational Shifts of Small Clusters of Hydrogen Isotopologues”, J. Phys. Chem. A 119, 12551 (2015). DOI: 10.1021/acs.jpca.5b08852

75) K. P. Bishop, Nabil F. Faruk, Steve C. Constable, Pierre-Nicholas Roy,OpenMM Accelerated MMTK”, Comp. Phys. Comm. 19, 203–208 (2015) 10.1016/j.cpc.2015.01.025

74) T. Zeng, H. Li, P.-N. Roy, “Perspective: quantum chemistry and path-integral Monte Carlo in of the study of microscopic superfluidity”, Int. J. Quantum Chem. 115, 535 (2015), DOI: 10.1002/qua.24815


73) X.-L.Zhang, H. Li, R. J. Le Roy and P.-N. Roy, “"Microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and mixed CO–pH2–He trimers”, Theo. Chem. Acc. 133, 1569 (2014). DOI:10.1007/s00214-014-1568-4

72) C M Herdman, S. Inglis, P-N Roy, R G Melko, and A Del Maestro, “A path integral Monte Carlo method for Rényi entanglement entropies”, Phys. Rev. E 90, 013308 (2014). DOI: 10.1103/PhysRevE.90.013308

71) N. Faruk, M. Schmidt, H. Li, R. J. Le Roy, and P.-N. Roy, “First Principle Prediction of the Raman shifts of parahydrogen clusters”, J. Chem. Phys. 141, 014310 (2014); http://dx.doi.org/10.1063/1.4885275

70) C M Herdman, P-N Roy, R G Melko, and A Del Maestro, “Particle entanglement in continuum many-body systems via quantum Monte Carlo”, Phys. Rev. B 89, 140501(R). DOI: 10.1103/PhysRevB.89.140501

69) M. Schmidt, S. Constable, C. Ing, and P.-N. Roy, “Inclusion of trial functions in the Langevin equation Path Integral Ground State method: application to parahydrogen clusters and their isotopologues” J. Chem. Phys. 140, 234101 (2014); http://dx.doi.org/10.1063/1.4882184.

68) T. Zeng and P.-N. Roy, “Microscopic Molecular superfluid response: theory and simulations”, Rep. Prog. Phys. 77 (2014) 046601.


67) G. Guillon, T. Zeng, and P.-N. Roy, “A new Post-Quantization Constrained propagator for rigid tops for use in path integral quantum simulations”, J. Chem. Phys. 139, 184115 (2013).http://dx.doi.org/10.1063/1.4829506

66) Hui Li, Xiao-Long Zhang, Robert Le Roy, and Pierre-Nicholas Roy, “Analytic Morse/Long-Range Potential Energy Surfaces and Predicted Infrared Spectra for CO-H2 Dimer and Frequency Shifts of CO in (para-H2)N, N=1-20 Clusters”, J. Chem. Phys. 139, 164315 (2013); http://dx.doi.org/10.1063/1.4826595

65) T. Zeng, G. Guillon, J. T. Cantin, and P.-N. Roy, “Probing a molecular superfluid with an asymmetric top impurity”, J. Phys. Chem. Lett. 4 239 (2013), http://dx.doi.org/10.1021/jz401188j.
Live slides! http://pubs.acs.org/iapps/liveslides/pages/index.htm?mscNo=jz401188j

64) L. Wang, D. Xie, R. J. Le Roy, and P.-N. Roy, “A new six-dimensional potential energy surface for H2−N2O and its adiabatic-hindered-rotor treatment”, J. Chem. Phys. 139, 034312 (2013); http://link.aip.org/link/doi/10.1063/1.4813527

63) S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, “Langevin Equation Path Integral Ground State”, J. Phys. Chem. A, 2013, 117 (32), pp 7461–7467, http://dx.doi.org/10.1021/jp4015178.

62) Y. Tritzant-Martinez,T. Zeng, A. Broom, E. Meiering, R. J. Le Roy, and P.-N. Roy “On the analytical representation of free energy profiles with a Morse/Long-Range model: application to the water dimer”, J. Chem. Phys. 138, 234103 (2013); http://dx.doi.org/10.1063/1.4810006

61) Grégoire Guillon, Tao Zeng, and Pierre-Nicholas Roy, “On the origin and convergence of a post-quantization constrained propagator for path integral simulations of rigid bodies”, J. Chem. Phys. 138, 184101 (2013); http://dx.doi.org/10.1063/1.4803118

60) T. Zeng, H. Li, and P.-N. Roy, “Simulating asymmetric top impurities in superfluid clusters: a para-water dopant in para-hydrogen”, J. Phys. Chem. Lett. 4, 18 (2013); DOI: 10.1021/jz3017705


59) L. Wang, D. Xie, R. J. Le Roy, and P.-N. Roy, “A new four-dimensional ab initio potential energy surface for N2O-He and vibrational band origin shifts for the N2O-HeN clusters with N =1~40”, J. Chem. Phys. 137, 104311 (2012); http://dx.doi.org/10.1063/1.4749248 (7 pages)

58) S. M. Islam, and P.-N. Roy, “Performance of the SCC-DFTB model for the description of five-membered ring carbohydrate conformations: comparison to forcefields, high-level electronic structure methods, and experiment”, J. Chem. Theory Comput., 2012, 8 (7), pp 2412–2423
DOI: 10.1021/ct200789w

57) P. L. Raston, W. Jäger, H. Li, R. J. Le Roy, and P.-N. Roy “Persistent Molecular Superfluid Response in Doped Para-Hydrogen Clusters”, Phys. Rev. Lett. 108, 253402 (2012)
URL: http://link.aps.org/doi/10.1103/PhysRevLett.108.253402
DOI: 10.1103/PhysRevLett.108.253402

56) C. Ing, J. Yang, K. Hinsen, T. Zeng, H. Li, and P.-N. Roy, “A path-integral Langevin equation treatment of low-temperature doped helium clusters”, J. Chem. Phys. 136, 224309 (2012).
URL: http://link.aip.org/link/?JCP/136/224309
DOI: 10.1063/1.4726507


55) S. M. Islam, M. Richards, H. Taha, T. L. Lowary and P.-N. Roy, “Conformational analysis of oligo-arabinofuranosides: overcoming torsional barriers with umbrella sampling”, J. Chem. Theory Comput., 2011, 7 (9), pp 2989–3000.DOI: 10.1021/ct200333p

54) Tao Zeng, Hui Li, Robert J. Le Roy, and Pierre-Nicholas Roy, “Adiabatic-hindered-rotor treatment of the parahydrogen-water complex”, J. Chem. Phys. 135, 094304 (2011): dpi: 10.1063/1.3626840

53) Hui Li, A. R. W. McKellar, Robert J. Le Roy and Pierre-Nicholas Roy, “Theoretical and experimental study of the weakly bound CO2-(para-H2)2 trimer”, J. Phys. Chem. A 115, 7327 (2011) ,doi:10.1021/jp200810f

52) Lecheng Wang, Daiqian Xie, Hua Guo, Hui L, Robert J. Le Roy, and Pierre-Nicholas Roy “Path integral Monte Carlo simulations of 4HeN-N2O clusters using a highly accurate analytical He-N2O potential energy surface”, J. Mol. Spec. 267, 136-143 (2011); doi:10.1016/j.jms.2011.03.007.

51) S. Y. Y. Wong, D. Benoit, M. Lewerenz, A. Brown, and P.-N. Roy, “Determination of Molecular Vibrational States using the ab initio Semiclassical Initial Value Representation: Application to formaldehyde”, J. Chem. Phys. 134, 094110 (2011); doi:10.1063/1.3553179 (10 pages).

50) H. Taha, P-N Roy, and T. L. Lowary, “Theoretical Investigations on the Conformation of the β-D-Arabinofuranoside Ring”, J. Chem. Theory Comput. 7, 420–432 (2011).


49) H. Li, R. J. Le Roy, P.-N. Roy, A.R.W. McKellar, “Molecular superfluid: non-classical rotations in doped para-hydrogen clusters”, Phys. Rev. Lett. 105, 133401 (2010).
selected as an Editors' Suggestion (Papers the editors and referees find of particular interest, importance, or clarity)
selected for a
synopsis by 'Physics' (physics.aps.org)

48) H. Li, P.-N. Roy, and R. Le Roy, “adiabatic-hindered-rotor’ treatment allows para H2 to be treated as if it were spherical”, J. Chem. Phys. 133, 104305 (2010); doi:10.1063/1.3476465

47) H. Li, Y. Liu, W. Jager, R. J. Le Roy, and P.-N. Roy, “Theoretical study of the microwave spectrum of isotopologues of OCS-(He)2”, Can. J. Chem. 88, 1146 (2010). (Boyd special Issue)

46) H. Li, P.-N. Roy and R. J. Le Roy, “Analytic Morse/Long-Range Potential Energy Surfaces and Predicted Infrared Spectra for CO2-H2”,. J. Chem. Phys. 132, 214309 (2010).

45) H. Taha, N. Castillo, D. Sears, R. Wasylishen, Roderick, T. Lowary and P.-N. Roy, "Conformational analysis of arabinofuranosides: Prediction of 3JH,H using MD Simulations with DFT-derived Spin–Spin Coupling Profiles", J. Chem. Theory Comput. 6, 212 (2010).


44) J. E. Cuervo and P.-N. Roy, "Weakly bound complexes trapped in quantum matrices: Structure, energetics, and isomer coexistence in (paraH2)N (orthoD2)3 clusters", J. Chem.Phys. 131, 114302 (2009).
Journal cover featured in Volume 131 Issue 11 on September 21, 2009

43) S.Y.Y.Wong, P.-N. Roy, and A. Brown, "Ab initio electronic structure and direct dynamics simulations of CH3OCl," Can. J. Chem. 87, 1022(2009). (Ziegler special Issue)

42) H. Li, N. Blinov, P.-N. Roy, and R. J. Le Roy, “PIMC Simulation of \nu_3 Vibrational Shifts for CO2 in (He)n Cluster Critically Tests the He-CO2 Potential Energy Surface”. J. Chem.Phys. 130, 144305 (2009).

41) Hashem A. Taha, Norberto Castillo, Pierre-Nicholas Roy, and Todd L. Lowary , J. Chem. Theory Comput. 5, 430 ( 2009).


40) Z. Li, L. Wang, H. Ran, D. Xie, N. Blinov and P.-N. Roy, H. Guo, "Path integral Monte Carlo study of CO2 solvation in 4He clusters", J. Chem. Phys. 128, 224513 (2008).

39) J. E. Cuervo and P.-N. Roy, "On the solid and liquid-like nature of quantum clusters in their ground state", J. Chem. Phys. 128, 224509 (2008).

38) E. N. Kitova, M. Seo, P.-N. Roy and J. S. Klassen, "Elucidating the Intermolecular Interactions within a Desolvated Protein-Ligand Complex. An Experimental and Computational Study", J. Am. Chem. Soc. 130, 1214 (2008). 10.1021/ja075333b

37) M. Seo, N. Castillo, R. Ganzynkowicz, C. Daniels, R.J. Woods, T.L. Lowary, P.-N. Roy, "An approach for the simulation and modeling of flexible rings: Application to the alpha--D-arabinofuranoside ring, a key constituent of polysaccharides from Mycobacterium tuberculosis", J. Chem. Theory Comput. 4, 184, (2008) 10.1021/ct700284r


36) B. B. Issack and P.-N. Roy, "Semiclassical initial value representation treatment of a hydrogen bonded complex of rigid water molecules from a single trajectory in Cartesian coordinates", J. Chem. Phys. 127, 144306 (2007); selected for the October 15, 2007 issue of Virtual Journal of Biological Physics Research.

35) B. B. Issack and P.-N. Roy, "Quantum molecular dynamics of hydrogen bonded complexes of rigid molecules using the semiclassical initial value representation in Cartesian coordinates", J. Chem. Phys. 127, 054105 (2007);selected for the August 15, 2007 issue of Virtual Journal of Biological Physics Research.

34) B. B. Issack and P.-N. Roy, "Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: Excited states", J. Chem. Phys. 126, 024111 (2007).

33) N. Blinov and P.-N. Roy, "Rotations and exchange in doped helium clusters: Insight from imaginary-time correlation functions", ACS Symposium Series 953, Oxford University press (2007): 165-175. 0.1021/bk-2007-0953.ch012


32) Y. Huh and P.-N. Roy, "Inclusion of inversion symmetry in centroid molecular dynamics: A possible avenue to recover quantum coherence", J. Chem. Phys. 125, 164103 (2006).

31) W. Topic , W. Jäger, N. Blinov, P.-N. Roy, M. Botti, and S. Moroni, "Rotational spectrum of Cyanoacetylene solvated with Helium atoms", J. Chem. Phys. 125, 144310 (2006).

30) J. E. Cuervo and P.-N. Roy, "Path integral ground state study of finite size systems: Application to small (para-hydrogen)N (N = 2-20) clusters", J. Chem. Phys. 125, 124314 (2006).

29) M.P. Nightingale and P.-N. Roy, "Excited states of weakly-bound bosonic clusters: discrete variable representation and quantum Monte Carlo", J. Phys. Chem. A 110, 5391 (2006).

28) Y. Xu, N. Blinov, W. Jäger, and P.-N. Roy, "Recurrences in rotational dynamics and experimental measurement of superfluidity in doped helium clusters", J. Chem. Phys. 124, 081101 (2006).

27) P.-N. Roy, "Molecular dynamics with quantum statistics: time correlation functions and weakly-bound nano-clusters", Theo. Chem. Acc. 116, 274 (2006).


26) S. Wong, N. Blinov, and P.-N. Roy, "Rotations in doped quantum clusters", Advances in Computational Methods in Sciences and Engineering 2005, Vol. 4 in Lecture Series on Computer and Computational Sciences, edited by T. Simos and G. Maroulis, pp. 1006-1009 (Brill Academic, Leiden, Netherlands, 2005)

25) B. B. Issack and P.-N. Roy, “Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero point energy”, J. Chem. Phys. 123, 084103 (2005)

24) N. Blinov and P.-N. Roy, “Effect of exchange on the rotational dynamics of doped helium clusters”, J. Low. Temp. Phys. 140, 255 (2005).

23) J. E. Cuervo, P.-N. Roy, and M. Boninsegni, “Path Integral Ground State with a Fourth-Order Propagator: Application to Condensed Helium“, J. Chem. Phys. 122, 114504 (2005).


22) X. Song, Y. Xu, P.-N. Roy, and W. Jäger, “Rotational spectrum, potential energy surface, energy levels, and wavefunctions of He-N2O”, J. Chem. Phys. 121, 12308 (2004).

21) Y Liu and P.-N. Roy,”Energy levels and wavefunctions of weakly-bound 4Hex20NeyH (x+y=2) systems using Pekeris coordinates and a symmetry-adapted Lanczos approach“, J. Chem. Phys. 121, 6282 (2004).

20) S. Moroni, N. Blinov, and P.-N. Roy, "Quantum Monte Carlo study of helium clusters doped with nitrous oxide: Quantum solvation and rotational dynamics", J. Chem. Phys. 121, 3577 (2004).

19) N. Blinov, X. Song, and P.-N. Roy, "Path Integral Monte Carlo approach for weakly bound van der Waals complexes with rotations: algorithm and benchmark calculations", J. Chem. Phys. 120, 5916 (2004).

18) P. Moffatt, N. Blinov, and P.-N. Roy, "On the calculation of single-particle time correlation functions from Bose-Einstein centroid dynamics", J. Chem. Phys. 120, 4614 (2004).

17) N. Blinov and P.-N. Roy, "Connection between the observable and centroid structural properties of a quantum fluid: application to liquid para-hydrogen", J. Chem. Phys. 120, 3759 (2004).


16) P.-N. Roy, "Energy levels and wavefunctions of weakly-bound bosonic trimers using Pekeris coordinates and a symmetry-adapted Lanczos approach", J. Chem. Phys. 119, 5437 (2003).

15) B. Harland and P.-N. Roy, "An initial value representation semi-classical approach for the study of molecular systems with geometric constraints", J. Chem. Phys. 118, 4791 (2003); selected for the March 1, 2003 issue of the Virtual Journal of Biological Physics Research


14) P.-N. Roy and N. Blinov, "Centroid dynamics with quantum statistics", Isr. J. Chem. 42, 183 (2002); special issue on " Chemical Processes in Many-Body Quantum Systems".

13) N. Blinov and P.-N. Roy, "An effective centroid Hamiltonian and its associated centroid dynamics for indistinguishable particles in a harmonic trap ", J. Chem. Phys. 116, 4808 (2002).


12) N. Blinov and P.-N. Roy, "Operator Formulation of centroid dynamics for Bose-Einstein and Fermi-Dirac statistics", J. Chem. Phys. 115, 7822 (2001).

11) N. Blinov, P.-N. Roy, and G.A. Voth, "Path Integral Formulation of Centroid Dynamics for Systems Obeying Bose-Einstein Statistics" , J. Chem. Phys. 115, 4484 (2001).

10) P. Calaminici, A. Koster, T. Carrington Jr., P.-N. Roy, N. Russo and D. R. Salahub, "V3: Structure and vibrations from Density Functional Theory, Franck-Condon Spectra and PFI-ZEKE Spectrum" , J. Chem. Phys. 114, 4036 (2001).

2000 and earlier...

9) D. R. Reichman, P.-N. Roy, S. Jang, and G.A. Voth, "A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonliner operators", J. Chem. Phys. 113, 919 (2000).

8) P.-N. Roy and J. C. Light, "Time-dependent Hartree approaches for the study of intramolecular dynamics in dimer systems" , J. Chem. Phys. 112, 10778 (2000).

7) P.-N. Roy, S. Jang and G.A. Voth, "Feynman Path Centroid Dynamics for Fermi-Dirac Statistics", J. Chem. Phys. 111, 5303 (1999).

6) P.-N. Roy and G.A. Voth, "On the Feynman Path Centroid Density for Bose-Einstein and Fermi-Dirac Statistics", J. Chem. Phys. 110, 3647 (1999).

5) P.-N. Roy and T. Carrington Jr., "A Direct-Operation Lanczos Approach for Calculating Energy Levels",Chem. Phys. Lett. 257, 98 (1996).

4) D.-S. Yang, M.Z. Zgierski, A. Berces, P.A. Hackett, P-N. Roy, A. Martinez, T. Carrington Jr., D.R. Salahub, R. Fournier, T. Pang and C. Chen., "The Structure and Dynamics of Nb3C2 Clusters by Pulsed Field Ionization-Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Theory", J. Chem. Phys. 105, 10663 (1996).

3) P.-N. Roy and T. Carrington Jr., "An Evaluation of Methods Designed to Calculate Energy Levels in a Selected Range and Application to a (1-d) Morse Oscillator and (3-d) HCN/HNC", J. Chem. Phys. 103, 5600 (1995).

2) D.-S. Yang, M.Z. Zgierski, D.M. Rayner, P.A. Hackett, A. Martinez, D.R. Salahub, P.-N. Roy and T. Carrington Jr., "The structure of Nb3O and Nb3 O+ Determined by Pulsed Field Ionization-Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Theory", J. Chem. Phys. 103, 5335 (1995).

1) D.-S. Yang, A. Martinez, P.-N. Roy, M.Z. Zgierski, D.M. Rayner, D.R. Salahub, T. Carrington Jr. and P.A. Hackett, "Structures of some Metal Clusters Determined by PFI-ZEKE Photonelectron Spectroscopy and Density functional theory", Frontiers Science Series (1996), 16 (Structures and Dynamics of Clusters), 135-144.